
(a) Visit counts of states after
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(c) Solved AMDP of T������� ap-
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(d) Solved AMDP of U������ ap-
proach

Figure 8: Comparison of solved AMDPs for both approaches
in Grid World with traps. Green cell on the left side denotes
starting state, goal state is the blue cell on the right side.

towards the goal state, directly traversing the region of traps, as
indicated in Figure 8d. This looks correct in the abstract MDP,
but actually causes huge negative rewards in the environment.
Moreover, reward shaping in Figure 8d is actually hindering the
ground level agent from learning the optimal policy in certain area
(from bottom right to top left) of the maze.

4.3.2 Visualization in Flag Collection Domain. Figure 9 visualizes
how our T������� approach works over the actual state space of
the Flag Collection domain. In our Flag Collection domain, a state
is in form of B = (G,~,0,1, 2), where G,~ indicate coordinates and
0,1, 2 are binary variables indicating whether the corresponding
�ag is collected or not. Since the last three dimensions are binary,
we are able to visualize and convert the 5-dimensional state space
into 8 2-dimensional subspaces, corresponding to each status of �ag
collection. Certain transitions are only uni-directional, for example
from state (G,~, 0, 0, 0) one can transit to state (G,~, 0, 1, 0), but the
transition in the reverse direction is not possible.

As shown in Figure 9, the regions with irregular boundary are the
abstract states generated by T������� approach and they all abide
by the topology of the environment. It is possible that one abstract
state containing a �ag could span across two subspaces, because the
T������� approach generates abstract states following the topol-
ogy of the complete 5-dimensional state space. This characteristic
enables our approach to build the transition and reward function of
AMDPs automatically, based on stored experiences without exter-
nal domain knowledge (according to Algorithm 2). That is to say,
the T������� approach is able to generalize to various state spaces,
in which each dimension could have very di�erent properties.

In Figure 9, value functions for abstract states are also presented
as a heatmap, where lighter colors indicate higher values, and vice
versa. Starting from the white cell(left bottom corner) in subspace(0-
0-0), reward shaping can always steer the agent towards abstract

states with higher values, then approach the goal state (blue cell
on the left bottom side) in subspace(1-1-1) e�ciently.

Figure 9: Solved AMDP for T������� approach in Flag
Collection domain over maze: Low connectivity. The agent
starts from the white cell(left bottom corner) in subspace(0-
0-0) and tries to reach the goal state(blue cell on left bottom
side) in subspace(1-1-1). Green cells located in the upper half
of the maze are �ags.

5 CONCLUSION
We proposed a novel approach for generating high-quality AMDPs
that help accelerate existing model-free RL algorithms. Our ap-
proach to construct abstract states is inspired by graph represen-
tation learning methods and e�ectively encodes topological and
reward structure of the ground level MDP. Meanwhile, it requires
little external domain knowledge and generalizes well to various
state spaces. We showed impressive performance improvements
over the U������ approach in Flag Collection domain in terms of
convergence speed, sample e�ciency and run time consumption.
In our qualitative analysis, we showcased that our approach can
generate AMDPs that preserve the topological and reward structure
of the underlying MDP.
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