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Graphs in biomedicine
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Protein interaction network

Image Source : wikipedia

N subjects

Population graph

Feature vector

Imaging data
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M labelled samples
N-M samples to classify

Patient Network
Image Source : Parisot et al.


Megha Khosla
Image Source : Parisot et al. 


Graph Machine Learning (GraphML)
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Image Source: [Lietal., 2022]

Shallow Network Embedding Methods

Examples : DeepWalk, Node2Vec, NERD, HOPE
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Graph Machine Learning

Graph Neural Network
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Examples :
GCN, GAT, GIN



Applications of GraphML in Biomedicine

Biological problems
- Predict new human-pathogen protein interactions

- Predict new miRNA-disease associations

Main Challenges
- Data scarcity

- Data Bias

Other common issues
- Wrong evaluation setups leading to data leakage

- Limited and biased train-test data

N. Dong, J. Schrader, S. Mucke, M. Khosla, “A Message Passing framework with Multiple data integration for miRNA-
Disease association prediction”, In Scientific Reports, 2022.

* N. Dong, S. Micke, M. Khosla, “MuCoMiD: A Multitask graph Convolutional Learning Framework for miRNA-Disease
Association Prediction”, in IEEE/ACM Transactions on Computational Biology and Bioinformatics 2022

* N. Dong, G. Brogden, G. Gerold, M. Khosla, “A multi-task transfer learning framework for the prediction of virus-human
protein-protein interactions”, BMC Bioinformatics, 2021.

* N.Dong, M.Khosla, Towards a consistent evaluation of miRNA-disease association prediction models. In IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), 2020



Predicting protein-pathogen protein interactions

How to use inductive biases from multiple sources of information to
overcome challenges of learning under low data regimes?

Fine Tuning
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Human PPI prediction
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Join learning framework
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https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04484-y



Predicting miRNA-disease associations

Data bias

20% of the diseases account for 80% of
associations

Data scarcity

Sparse bipartite graph with small number
of nodes

High number of false positives in training data I

miRNA T

Disease

Overall strategy: Learn jointly from miRNA family, miRNA-gene, disease-
gene interactions and disease ontology information



Join learning framework
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How to filter training data

Association probability

- Message passing to enrich gene associations [ Random Forest binary classifier ]
x x x Iy
|miRNA structur.al embedding | | miRNAI family | |disease structura;l embedding| |disease sem.antic sim|
- Feature selection to select important genes [ S DaeD e NEe ]
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https://www.nature.com/articles/s41598-022-20529-5




Challenges of transparency and privacy
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Transparency

Why was Bob’s loan denied?

Bob [

Decision has to be explained not only in terms of features

but also graph structure. General explainability methods

Explanation
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cannot be trivially applied for graphs.



Post-hoc explanations

Explanation types
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Explanation types- Examples: GNNExplainer, Zorro, PGExplainer

Feature explanations in terms of most relevant features X' C X

Structure explanations in terms of most relevant nodes (V' C V) oredges (E'C E)

We are interested in finding both feature and structure explanations which effectively
capture interplay of structure and features in model’s decision making.




Privacy

Graphs can contain sensitive information
- User’s sensitive attributes
- Sensitive relations

GNNs encode relation information within the model, could
memorise such information

- Your identity could be revealed because of your
neighbour



Privacy

Tries to infer private information

Node Membership Inference : Is Bob a part of training data? [Oiatuniietal., 21 [Duddu et al., "20]
Relation reconstruction : Who are friends of Bob? [He etal, '21zhang et al, 20

Attribute Inference : Does Bob smoke?



Building Private GNN Models
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Differential Privacy
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Many complexities arise



Building Privacy Preserving models for graphs

A direct application of techniques like DP-SGD is not
possible due to

- Unbounded sensitivity (think of the effect of leaving out
or adding one node in a graph)

- Violation of i.i.d. assumption

- Need for inference privacy (as training data might be
used during inference)

PrivGNN (Olatunji, Funke, Khosla, 2021), GAP (Sajadmanesh, Shamsabadi, A, Bellet, et al. 2022)

.
TU Delft



Transparency - Privacy Tradeoffs

But we want our models to be transparent and
private simultaneously

Transparency

Privacy

How much can the privacy be hurt?
" How to preserve privacy?
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Complex privacy preserving mechanism




Private Graph
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Reconstruction
'4/ — R
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Reconstructed Graph

Graph Structure Learning

Private Graph Extraction via Feature Explanations [Olatunji et al. 2022]
https://arxiv.org/abs/2206.14724

Reconstructing graphs from feature explanations
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Some interesting findings

- Training graph could be reconstructed using alone the
feature explanations and the labels

- Certain explanations leak more information than others

- Gradient based explanations incur high privacy loss

while showing low utility (quantified by high faithfulness and
sparsity)



Challenges

Structure explanations can directly reveal information
about neighbours

~

@ N
& %

Attacker

P4

Explaining decision on P1

\_ J

Explanations of neighbouring datapoints would be
correlated



Challenges

Private learning over graphs is more complex than that
In standard ML
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How to define explanation for a private model?



Research Directions and Open Questions

Quantification of privacy leakage in presence of different explanation types

- How can we measure information leakage due to different explanation types?
- Risk-utility assessment of different explainers/explanations
- Can we release explanations privately while still maintaining their utility?

Explaining the decisions of privacy-preserving models

- What should be the properties of an explanation for a privacy-preserving model?
Such properties might need to be defined based on the private learning strategy

- How to release such explanations in a private manner?

Joint optimization of privacy and transparency

- How can we optimise for the combined requirements of privacy and
transparency in GraphML?

Privacy and Transparency in Graph Machine Learning: A Unified Perspective, M.Khosla. In AIMLAI@CIKM’'22

https://arxiv.org/abs/2207.10896



