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• discover novel antibiotics (Stokes et al., Cell’20) 

Success of Machine Learning for Graphs

• power web-scale recommender systems 
(Ying et al., KDD’18; Pal et al., KDD’20) 

Example: Link Prediction
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Content 
recommendation is 

link prediction! ?

• assist particle physicists (Martinez et al., Eur. Phys. J. Plus’19)  
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Representation Learning
Embedding Nodes
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• Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the original network.  

Credits: tutorial on graph representation learning at The WebConf. 2018
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Example: Node Classification
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? ?

?
?

?
Machine 
Learning

Credits: tutorial on graph representation learning at The WebConf. 2018Node classification Link prediction

Graph classification Community detection

Machine Learning for Graphs



Graph Neural Networks

Image Source : https://tkipf.github.io/graph-convolutional-networks/

Recursive aggregation over neighborhood feature representation

z(ℓ)
i = AGGREGATE ({x(ℓ−1)

i , {x(ℓ−1)
j ∣ j ∈ 𝒩i}})

x(ℓ)
i = TRANSFORM (z(ℓ)

i )
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Privacy in GNNs

• Graphs can contain sensitive information 
• - User’s sensitive attributes 
• - Sensitive relations

• GNNs encode relation information within the model, could 
memorise such information

• - Your identity could be revealed because of your 
neighbour
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Privacy in GNNs

• Quantify Information Leakage in trained GNNs

• - Node level inference attacks

• - Link level inference attacks 

• Privacy Preserving GNNs

• - Centralised Setting 

• - Federated Settings [Jian et al., ’22] [Sajadmanesh and Gatica-Perez, ’21]

[Olatunji et al., ’21]

[Olatunji et al., ’21] [Duddu et al., ’20]

[He et al., ’21] [Zhang et al., ’20]
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List of infected patients Researcher

Membership Inference Attack- Motivation
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Membership Inference Attack- Motivation

Why?
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GNN Model

Attacker

Social Network

26

Privacy-preserving GRL

GNNs highly vulnerable to MI attack 

Models which avoid to embed exact graph structure are more robust  I
Privacy

What increases the vulnerability of GNNs for membership inference at-

tacks? Which models are most robust to membership inference at-

tacks?(Oatunji, Nejdl, Khosla; 2021)

• GNNs highly vulnerable to MI attacks
• Models which avoid to embed exact graph structure are more robust

Megha Khosla | Research Vision | 14/18

Training data

?

Tries to infer membership 

Membership Inference Attack

[Olatunji, Nejdl, Khosla, In IEEE TPS  ’21] (Best student paper)

https://arxiv.org/pdf/2101.06570.pdf
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Attack Strategy

• Train a shadow model to replicate 
behavior of target model

• Assumption: Presence of a shadow dataset drawn out from the 

same distribution as the target (could be relaxed, see paper)
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Attack Strategy

• Use the output posteriors of shadow model to 
train a binary classification model (attack 
model)

• Query the attack model using posteriors 
from target
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Model Comparison

- Attack performance of GraphSage drops on 
larger graphs because of neighborhood 
sampling)

- GCN and SGC.  behave similarly in terms of 
attack performance. Most vulnerable to 
attack

- GAT: most robust to MI attacks because of 
the learnable attention  weights for 
different edges

Four representative GNNs:  
GCN, SGC, GAT, GraphSage
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Robustness and defenses

• All studied GNNs are vulnerable to a simple attack

• - GAT and GraphSAGE shows better resistance

• - Not encoding the exact graph structure helps

• Defenses

• - Simple neighbourhood perturbation at query time 
degrades attack performance 

• - Other strategies based on output perturbation 

•  
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• Releasing Graph Neural Networks with Differential 
Privacy Guarantees [Olatunji, Funke and Khosla, ’21]

https://arxiv.org/pdf/2109.08907.pdf
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Differential Privacy

GNN Model

GNN Model

Output

Output

Probabilistic 
Indistinguishable
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log ( Pr[Φ(X ) ∈ E]
Pr[Φ(X′ ) ∈ E] ) ≤ ε



What can we do?

GNN Model Output

Perturb Input

Empirically GraphSage which uses perturbed input ( via neighbourhood sampling) 
Shows better robustness towards MI attack
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What can we do?

GNN Model Output

Perturb model 
parameters

Example : DP-SGD for non relational data
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What can we do?

GNN Model Output

Perturb Output

Example : Perturbating output alone does  
not suffice; imagine white-box access to the  
model

One can also perturb objective function,  
mainly analysed for convex functions 
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Model trained 
on private data

What can we do?

Knowledge distillation

under DP guarantees
Model trained 
on public data

Example : PATE [Papernot et al. ’18] for non relational data

Model for release
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Our Approach : PrivGNN
Assumption : Public graph in addition to the private graph sharing the same 
node feature space

Private node-labelled Graph Public unlabelled Graph
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Knowledge Distillation using noisy outputs
Generate noisy labels for a sample of public nodes using private GNN to train a public 
GNN
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Adding Laplacian noise (at scale  ) to each output gives - DP for each query.β 1/β

Not enough!! Can do better
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Privacy Amplification by Subsampling

Randomly pick up a small private sample with sampling ratio  for private 
GNN training

γ

- Less the amount of private information used better the privacy guarantee
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Applying an -DP mechanism to a random -subset of the data provides 
-DP.  In our work we used RDP framework for tighter guarantees. 
(ϵ, δ) γ

(O(γϵ), γδ))
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What can we do better?
Choose K-nearest neighbours from the private subsample to build the 
induced for training query specific private GNN

- Intuitively better privacy due to further reduction of used data

- Query specific private GNN; better prediction for the public query
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- Better exploitation of graph structure
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The Complete Picture: PrivGNN
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Privacy-Accuracy Tradeoff
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Releasing Graph Neural Networks with Differential Privacy Guarantees

(a) Accuracy vs. Noise (/ 1/�) injected to each query.

(b) Privacy budget vs. Noise (/ 1/�) injected to each query.

Figure 5: Privacy-utility analysis. Here, |Q| is set to 1000. For PRIVGNN, � is set to 0.3.

B.1. Privacy Amplification by Subsampling

A commonly used approach in privacy is subsampling in which the DP mechanism is applied on the randomly selected
sample from the data. Subsampling offers a stronger privacy guarantee in that the one data point that differs between two
neighboring datasets has a decreased probability of appearing in the smaller sample. That is, when we apply an (", �)-DP
mechanism to a random �-subset of the data, the entire procedure satisfies (O(�"), ��)-DP. The intuitive notion of amplifying
the privacy by subsampling is that the privacy guarantees of the DP mechanism can be amplified by applying it to a small
random subsample of records from a given dataset (Balle et al., 2018). This is also referred to as the subsampling lemma in
the literature (Balle et al., 2018). Under some restrictions on ↵, we can represent the combination of the subsampling lemma,
and the tight advanced composition of RDP (Wang et al., 2019; Zhu & Wang, 2019) as: "MoSample� (↵)  O(�2"M(↵)).
In this paper, we apply the Poisson subsampled RDP-amplification bound from Zhu & Wang (2019).
Theorem 8 (General upper bound (Zhu & Wang, 2019)). Let M be any mechanism that obeys (↵, "(↵))-RDP. Let � be

the subsampling probability then for integer ↵ � 2, then the privacy budget

"MoPoissonSample(↵) 
1

↵� 1
log

(
(1� �)↵�1(↵� � � + 1) +

✓
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)
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B.2. Proof of our Privacy Guarantee

Proof of Theorem 7. Our algorithm is composed of (i) a sampling mechanism in which a small sample of private data is
used to train the private GNN model and (ii) a Laplacian mechanism (with scale parameter �), which is used to generate a

B1: Non private GNN model trained on private graph, tested on public test set 

B2: Non private GNN model trained on public train split, tested on public test set 

1/λNoise Scale =
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MI Attack against PrivGNN
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Releasing Graph Neural Networks with Differential Privacy Guarantees

Figure 6: Performance of MI Attack-1 on PRIVGNN. B1 refers to the MI attack on non-private GNN model.

guess ( 0.54).

E.1.2. IDENTIFYING PRIVATE NODES BY PROXY VIA MI (ATTACK-2)

For this attack, we assume that the attacker knows that the released student model (target model) is trained using the
knowledge distillation paradigm. Therefore, for such a strong attacker, her goal is to determine the public nodes that were
privately labeled and used by PRIVGNN in training the target model from public nodes that were not privately labeled. The
rationale is that if an attacker can confidently determine the public nodes that are privately (noisily) labeled, then it might
reveal some information about the private dataset. For instance, consider an attacker that is aware that PRIVGNN utilizes
KNN in selecting the private nodes used in labeling a public node. If she determines such a public node that was privately
labeled, she might reveal private information of up to K private nodes assuming that she has access to the entire graph but
does not know which is private or public. Therefore, the private nodes are said to be identified by ”proxy”.

The objective of her shadow model training is to distinguish between the posteriors of labeled nodes that were used in
training from those that were unlabeled as described in Section E.1. She queries the target model and obtains posteriors with
her nodes of interest then determines membership status by feeding them into her trained attack model.

Figure 7: Performance of MI Attack-2 on PRIVGNN. B1 is the non-private GNN model.

As shown in Figure 7, our PRIVGNN method reduces MI attack to a random guess achieving an AUROC of 0.40, 0.51 and

B1: Model trained directly  
using private date

MI attack against PrivGNN is no 
better than a random guess
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What can we do better?

Better sampling of more representative set of public queries 

Use of unsupervised pre-training. Preliminary investigations 
showed improvements

Devising more privacy attacks for robustness of the model 
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