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Outline

Why this tutorial?

Explanations over graph data

Posthoc explainability in graphs : Instance-wise and Global explanations
Evaluation of post-hoc explanations

Hands-On Session



Graphs are everywhere
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Graphs are everywhere
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Success of Graph Machine Learning
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KDD’18; Pal et al., KDD’20)
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Different kinds of graphs

Some of the graph types

Directed @—>@—>@®

1 2.5
Weighted @—@—@
t=1 H

Sliced
t=0 ‘<:

Undirected, unweighted, static

Directed, weighted, continuous

Feature types:

No features

Dense features, e.g. word embeddings
Node features

Edge features Sparse features



Typical ML Tasks on Graphs
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Node classification Link prediction

Graph classification Community detection



Graph Machine Learning (GraphML)

Shallow Network Embedding Methods

Look-up
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Image Source: [Li et al., 2022]



Graph Machine Learning (GraphML)

Shallow Network Embedding Methods

Look-up
table
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Image Source: [Li et al., 2022]

=Generate a look up table for node representations

=Similar nodes get embedded closer Examples :

DeepWalk, Node2Vec, NERD, HOPE



Graph Neural Networks (GNNSs)
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Image Source : https://tkipf.github.io/graph-convolutional-networks/



Our Focus : Explainability of GNNs

Why special techniques for Graphs?

vs.

3. Wache
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Our Focus : Explainability of GNNs

Why special techniques for Graphs?

vs.

3. Wache

Graphs

Unlike images and texts, graphs are not grid-like data, which means there is no locality information

and each node has different numbers of neighbors. Regions like in image are not even defined.



Challenges for Graphs

Bob




Challenges for Graphs

Decision has to be explained not only in terms of features
but also graph structure. General explainability methods

cannot be trivially applied for graphs.



Explanation for GNNs

Explanation types
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Explanation for GNNs

Explanation types

d Feature mask A
Node Set Edge Set Node/Edge Features "
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Explanation types:

Feature explanations in terms of most relevant features X' C X

Structure explanations in terms of most relevant nodes (V' C V) oredges (E'C E)



Explanation for GNNs

Explanation types

d Feature mask A
Node Set Edge Set Node/Edge Features "
N 090703
"
©
& Edge mask
=
: @*ﬁ
Input(V, E, X) 5 1
=
© Node mask
I
09|09|01| 0.0
NS )

Explanation types:

Feature explanations in terms of most relevant features X' C X

Structure explanations in terms of most relevant nodes (V' C V) oredges (E'C E)

We are interested in finding both feature and structure explanations which effectively
capture interplay of structure and features in model’s decision making.




Computational Graph for GNNs

Computational graph for

node i corresponding to
e |a 2-layer GNN
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Image Source: [Lin et al., 2021]

At inference time decision of a GNN on a particular node can be
attributed to important nodes/edges and their features in its
computational graph.



An example explanation

Computation graph for the node
representing the paper
“Graph Attention Network”

Prediction class label: “GNN”
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Example Explanation

The learnt model focusses for the prediction “GNN”
1) Features (Words in this example)
« “Graphs”
« “Neural”
2) Neighbourhood Nodes (Papers in this example):
« Transformers (Vaswani et al. ‘17)
« GraphSage (Hamilton et al. ‘17)
« GCN (Kipf & Welling ‘16)

Node Mask

Feature Mask

Deep

Convex

Graphs

Training Metrics

Neural

LIME

Transfor
mers

NERD

Deep
Walk

Graph
Sage

Node2
Vec

Planetoid

GCN




Explaining GraphML models

Explaining/interpreting decisions of models learnt over
graph data

Explainability in Graph Machine
Learning
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Explaining GraphML models

Explaining/interpreting decisions of models learnt over
graph data

Explainability in Graph Machine
Learning

T~

[ Interpretability by design j

; Post-hoc explanations §

[Instance-levelj [ Global j




Post hoc Vs. Interpretability by design

Post-hoc explanations

Explaining an already trained
complex model
does not affect its performance

Explanations might not be faithful to the
model

Inherently interpretable models

Simpler inherently interpretable models
could incur loss of performance

Explanations are by design faithful to the
model



This tutorial- Explainability of GNNs

@ Approaches for Post-hoc Explainability

(D\ Evaluation of Explanations

ﬁ Hands on Session



@ Approaches for Post-hoc Explainability



Approaches for Post-hoc Explainability

Instance-wise or

. Global explanations
Local explanations

Explain individual predictions |deally should explain complete

model behaviour

Help to judge if the model at a
higher level is suitable for
deployment

Help to judge if individual predictions
are right for the right reasons

Shed light on local biases Shed light on big picture biases

affecting larger subgroups




Instance-level Explanations

Explain individual predictions using local structure of the given
instance

[Instance-levelj

( Y ( Y ( Y ( )
Gradient based Perturbation Surrogate Decomposition
based model based methods
Grad, GradCam, GNNExplainer, Zorro, PGMEXxplainer,
IntegratedGradients PGExplainer GraphLIME LRP, GNN-LRP

- J J J _J




Gradient based Explainers

21



Gradient based Explainers

Input Model Predictions

* Junco Bird

* Image Source : https://explainml-tutorial.github.io

F: R" — R€
Model F with n-dimensional input and c classes.

The class specific logic is given by

F,'IR"%R


https://explainml-tutorial.github.io

Gradient based Explainers

Input Model Predictions

Junco Bird

Input-Gradient

Logit

Visualize as a heatmap

Input

Image Source : https://explainml-tutorial.github.io



https://explainml-tutorial.github.io

Gradient based Explainers

Gradient (Grad)

VxFi(x)
Gradlnput
VXF,'(X) & X
SmoothGrad 1 N
N Z vx—l—esFi(X T 5)
i=1
IntegratedGrad

N L §F(X+ a x (x — X))
(x—x)x/azo o



Gradient based Explainers for GNNs

Adjacency Matrix ere Matrix Weights Matrix
Simplified GNN X/ _ AX@
. 0 . .
Node importance —X’ (column-wise gradient)
5Xi
Feature importance gX (row-wise gradient)

Edge importance —X



Perturbation based Explainers

26



Perturbation based Explainers

Input graph

.

Objective function

Prediction

~

-

Key Idea: Given a trained GNN, generate a mask over the input features/

X I
| Feature mask
* 09| 0.7,0.3 T
4 ) Edge mask ' N
(1) :
Q‘ Mask generation | O Ly ST
3) A algorithm
1
o / -
Node mask
09/09|01]|0.0
-
Image Source : Yuan et al. 2021
ﬂ

nodes/edges such that the masked input leads to the similar prediction as the
original one produced using the whole input.

_J




Example 1: GNNExplainer

[ Ying et al. NeurIPS 2019 ]
https://arxiv.org/abs/1903.03894

Key Idea
Find an explanation such that the mutual information between the
explanation and the original prediction is maximized

Explanation Type
Continuous importance scores over features and edges
(Soft edge and feature masks)



Example 1: GNNExplainer

Original Input

X B
Feature Mask

09/07]03

Input graph

€ —
0‘ — 4 Edge Mask -’ Ys PN Yo
(4] @

0.5 (0.1 0.43

_J

Learn an edge and feature mask such that the log probability for original
predicted class is maximised.

[mln _ Z logP(D <YO =Yy | G = Acomp O O'(M) X = comp @Mf)J

M M
f =1




Example 2: Zorro

| Funke et al. TKDE 2022 ]
https://arxiv.org/abs/2105.08621

Key Idea
Compute a valid, sparse and stable explanation such that the prediction using the
explanation is in expectation close to the original prediction

Explanation Type
Binary importance scores over features and nodes
(Hard node and feature masks)



Valid Explanation

Validity

1 R IEEI %)or

(I) 0

A subset of the input such that the prediction while just using the
input stays the same as the original prediction is a valid explanation



Sparsity

The chosen subset (explanation) should be sparse



Stability

What happens to the not selected part of the input?

= Set the not selected part by some
1 noisy values.

= Check the expected prediction over
multiple such perturbations.

A stable explanation is one which achieves in expectation a
close prediction to that of the original prediction



Constructing a perturbed input

Feature Mask

Node Mask

Computation Graph for node n

Selected nodes and features are marked green
Construct a perturbed input by setting selected features of selected nodes |
' (the green cells) to their true values and others to random noisy values  §

Mathematically if M(S) corresponds to product of feature and node masks

Yo=XOMS)+ZO0 A -MS)),Z~N



RDT-Fidelity of an explanation

O- /O/\V‘C; F(S) = byzen llf(X>=f(Y5)]
N

' Yo=XOMS)+Z0O A —MS).Z~ N

Computation Graph for node n

Zorro

' Find the sparsest explanation such that its RDT-fidelity is maximised. |

35



Surrogate Model Based

36



Surrogate Model based

- : : Fit surrogate models
Input data | Node/edge I
: dropping I r—I—\
| I Sampled HSIC Lasso
: : data
I I
'| Local neighbor | New :
GNNs —> | . - GNNs — —\  Explanations
| sampling | dataset GCNs
I I
I I
| | New
: : predictions
. L. | Node feature || ~— :

: e b : Bayesian PGM

I I

8 Key Idea: Given an input graph and its prediction, sample a local dataset to

represent the relationships around the target data. Surrogate methods which
_are usually interpretable by design are applied to fit the sampled local datasetu




Example: PGMExplainer

[ Wu and Thai, NeurlPS 2020 ]
https://arxiv.org/abs/2010.05788

Key Idea
Fits an interpretable model to a local perturbed dataset

Explanation Type
Hard node masks
(Top nodes are output based on node importances)


https://arxiv.org/abs/2010.05788

Example : PGMExplainer

[ Wu and Thai, NeurlPS 2020 ]

Filtered
Data Variable Data Structure PGM

Generation Selection Learning Explanation

X Prediction PGM-Explainer

"E is purple"

Generate a local dataset by randomly perturbating features of nodes in the computational
graph and corresponding predictions.

Fit a Bayesian model on the perturbed data to obtain node importances



Global Explanations

! Collection of Local Model Distillation Prototype based
t Explanations
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Collection of Local Explanations

Single explanation

s Generate a local explanation for each instance

» Pick a subset of k explanations to constitute a global explanation

(So far no explainer for graph data follow this strategy ]

Image credit : ExplainML tutorial AAAI 21



Model Distillation

d

GNN

Predictive \

Model

v1, v2

vi1, vi2

Data

Label 1
Label 1

Label 2

Model

Predictions

'\

> — { Explainer 1 —

/

-

o

Simpler, interpretable model
which is optimized to mimic
the model predictions

~

)

G/iable strategy but so far no explainer for graph data follow this strategy ]

Image credit : ExplainML tutorial AAAI 21
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Global Explanations by XGNN

[ Yuan et al., 2020 ]

https://arxiv.org/abs/2006.02587

Graph set

Prediction

> GNNSs Maximize

Human
(T AT observation

i

7
S |
: @p 0 Stepl Step 2
| sl PR 7
| I N
: 0 e
| - | 9, | @,
I
I
I \ / Generated
A Graph generator graph

Key Idea: Generate graph, G* which maximise the prediction probability of

a particular class: G* = argmax P(f(G) = ¢)
G


https://arxiv.org/abs/2006.02587

Generation of Explanation Graph

Node Features Starting Node

Current Graph I_, _______________ R Ending Node
—— — i x
./@.<f . . New Graph
Combine ] MLPs MLPs > >
_ Candidates X (@@\
| | X
\_______ !

Starting with a candidate node, predict the start and end node for the edge to be
added

Image Source : Yuan et al., 2020



Training of Graph Generation

= Considering the Reinforcement Learning setting each intermediate generated graph
corresponds to a state.

= Action corresponds to selection of start and end node of the edge to added

Prediction
é )
| GNNs Maximize
= Training by Policy Gradient \_
» Reward computed using "
prediction probability and graph . =
Step0  Step 1 Step 2

rules == Y (el
| O rﬂ(f
—— l?}!J .

Generated
Graph generator graph




CD\ Evaluation of Post-hoc Explanations

What is a good explanation?

How to measure the goodness of an explanation?



Evaluating Post-Hoc Explanations

Functionally-grounded Human-grounded

evaluation evaluation

[ Faithfullness j

l

[ Sparsity J

[BAGEL Benchmark, Rathee et al. 2022]
https://github.com/Mandeep-Rathee/Bagel-benchmark

47



Evaluating Post-Hoc Explanations

Functionally-grounded

evaluation

[ Faithfullness J

l

[ Sparsity ]

Human-grounded

evaluation

N
Correctness
(Right for right
reasons)
Y,

[BAGEL Benchmark, Rathee et al. 2022]
https://github.com/Mandeep-Rathee/Bagel-benchmark

47



Evaluating Post-Hoc Explanations

Functionally-grounded Human-grounded

evaluation evaluation

. ( E \
[ Faithfullness J Correctness
_ Plausibility

(Right for right
l reasons)

_ _ y,
[ Sparsity ]

[BAGEL Benchmark, Rathee et al. 2022]
https://github.com/Mandeep-Rathee/Bagel-benchmark

47



Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation



Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation

Sufficiency
Keep the most important features/nodes/edges and check if they
alone can predict the original decision.



Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation

Sufficiency
Keep the most important features/nodes/edges and check if they
alone can predict the original decision.

Comprehensiveness

Remove the features/nodes/edges not in the explanation and check if
the original prediction changes.



Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?



Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

What happens when you cannot remove features?



Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

What happens when you cannot remove features?

Yo=XOMS)+ZO A —-MS)),Z~ N



Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

What happens when you cannot remove features?

Yo=XOMS)+ZO A —-MS)),Z~ N

Take 2: Use RDT-Fidelity to check if the explanation is predictive and stable

: P e AT
b de'-.-".‘.':!' LT
High fidelity

Low fidelity



Sparsity

But the full input is also a faithful explanation

50



Sparsity

But the full input is also a faithful explanation




Sparsity

But the full input is also a faithful explanation

Take 1: Sparsity for hard masks = Selection size / total




Sparsity

What about soft masks ?

Cora CiteSeer

PubMed

100 ~

Count

50 A

0.25 0.30 0.35 0.25
Features Mask Value

0.30 0.35 0.25 0.30
Features Mask Value

0.35
Features Mask Value

A uniform distribution of normalised mask distribution implies complete input

Take 2: Check Entropy of normalised distribution of masks

Lower the entropy sparser the explanation

51



Correctness

o E 4 - an 5 = - 4 5 2 - 0 S 7 ~p 5 s - N 5 P i . oy 5 ” - 29

Can the explanation model detect any injected correlations responsible for altering 5

model's behavior ?

Introduce correlations in the training data which can change the decision
on a node/graph. Then check if explanation discovers the added
correlations.

Target Node \ / Incorrect prediction
B > | GNN 5

/ Correct prediction

Check the explanation
On retrained model
[ 1,
_ GNN O O O /
—)

Vs
am ® @

Ground Truth

L

Re-training



Correctness

Target Node \ / Incorrect prediction
> | GNN

/ Correct prediction

Check the explanation
On retrained model

[ 1
GNN ” O O O /
=
@ @® G

Re-training

_—

Ground Truth

(i) Choosing correlations is tricky in the first place
(ii) Requires model retraining

Drawbacks :




Plausibility

Human
Rationales

GNNExp

Grad

CAM

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

all in this movie...

Compute agreement of explanation with human rationales

Metrics : F1 score for hard masks, AUPRC score for soft masks



Plausibility

Should be used in conjunction with a suitable faithfulness metric

First ensure that the explanation is in fact approximating model’s decision

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

GCN all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

GAT all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
APPNP that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it

all in this movie...

S = 2 - ~AR s g 2 - On, g g ™ - A2 il '. - A7 i = - 23 E

Given the explainer is faithful to the model one can use plausibility to compare GNN |
. models for the agreement of their decision making process with human rationales. }




Other Evaluation schemes

Measuring agreement (explanation accuracy) with planted subgraph in a synthetic

graph
Computation graph GNNExplainer Grad Att Ground Truth
0
@ 0o 00
Q— c>c)OoOO o
(4] dgi%o%oogg%goo : O f :
B eEEes | o
S owERS rL o ?ﬁ i
| |

> : :
"E ! @) !
=3 N | |

o cc?&:? 0%3 | |
E oﬁééé%é%g | Q:go .E | ﬁ
(3 2%;28000?3:& e i O o i
< o
m

Image Source : GNNExplainer

Drawback : How to be sure if the model picked the planted subgraph?



Other Evaluation schemes

Measuring attribution (explanation) consistency across high performing models

[Sanchez-Lengeling et al. 2020]

Consistency

Quantifies the variability in explanation
accuracy using the top 10% of models
through a hyperparameter scan over model
architectures

Drawback : How to be sure if the model used the intended explanation?



A few parting words

Explaining GraphML models is inherently tricky because of the complex interplay of
structure and features in the decision making process

Several graph specific approaches are proposed with no clear winner

Evaluation of is inherently tricky in general but trickier for graphs because of additional
structural explanations

A possible direction to investigate is the threat of explainability to data privacy
https://arxiv.org/abs/220710896, https://arxiv.org/abs/2206.14724



ﬁ Hands-on-Session
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