
Megha Khosla (TU Delft),

Explainability in Graph Machine 
Learning

1

https://khosla.github.io

m.khosla@tudelft.nl

https://khosla.github.io
mailto:m.khosla@tudelft.nl


2

Outline

Why this tutorial?

Posthoc explainability in graphs : Instance-wise and Global explanations 

Evaluation of post-hoc explanations

Explanations over graph data

Hands-On Session
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Graphs are everywhere

Social Networks
Image Source : Medium

Drug Molecules
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Graphs are everywhere

Protein interaction network
Image Source : wikipedia

Financial network
Image Source : Schweitzer et al. 2009
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Success of Graph Machine Learning

• discover novel antibiotics (Stokes et al., Cell’20) 

• power web-scale recommender systems (Ying et al., 
KDD’18; Pal et al., KDD’20) 

• assist particle physicists (Shlomi et al., Mach. Learn.: Sci. Technol’21)  

Example: Link Prediction
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Content 
recommendation is 

link prediction! ?

Image Source : Coman et al. 2017
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&IGURE �� (%0 DATA LEND ITSELF TO BEING REPRESENTED AS A GRAPH FOR MANY APPLICATIONS� �A	 CLUSTERING TRACKING DETECTOR HITS INTO
TRACKS� �B	 SEGMENTING CALORIMETER CELLS� �C	 CLASSIFYING EVENTS WITH MULTIPLE TYPES OF PHYSICS OBJECTS� �D	 JET CLASSIFICATION BASED ON
THE PARTICLES ASSOCIATED TO THE JET�

4HIS REVIEW PAPER IS ORGANIZED AS FOLLOWS� !N OVERVIEW OF THE FIELD OF GEOMETRICAL DEEP LEARNING IS GIVEN IN
SECTION �� %XISTING APPLICATIONS TO PARTICLE PHYSICS ARE REVIEWED IN �� 'ENERAL GUIDELINES FOR FORMULATING (%0
TASKS FOR '..S ARE GIVEN IN SECTION �� )N PARTICULAR WE GO IN THE DETAILS OF THE DIFFERENT APPROACHES IN
BUILDING THE GRAPH CONNECTIVITY IN SECTION ���� THE VARIOUS MODEL ARCHITECTURE ADOPTED IN SECTION ���� 4HIS
PAPER CONCLUDES WITH A DISCUSSION ON THE VARIOUS APPROACHES AND THE REMAINING OPEN QUESTIONS IN SECTION ��

�� 'EOMETRIC DEEP LEARNING

���� /VERVIEW
$EEP LEARNING HAS BEEN CENTRAL TO THE PAST DECADE�S ADVANCES IN MACHINE LEARNING AND ARTIFICIAL
INTELLIGENCE ;��� ��=� AND CAN BE UNDERSTOOD AS THE CONFLUENCE OF SEVERAL KEY FACTORS� &IRST� LARGE NEURAL
NETWORKS CAN EXPRESS VERY COMPLEX FUNCTIONS� 3ECOND� VALUABLE INFORMATION IN BIG DATA CAN BE ENCODED INTO
THE PARAMETERS OF LARGE NEURAL NETWORKS VIA GRADIENT
BASED TRAINING PROCEDURES� 4HIRD� PARALLEL COMPUTER
HARDWARE CAN PERFORM SUCH TRAINING IN HOURS OR DAYS� WHICH IS EFFICIENT ENOUGH FOR MANY IMPORTANT USE
CASES� &OURTH� WELL
DESIGNED SOFTWARE FRAMEWORKS� SUCH AS 4ENSOR&LOW ;��= AND 0Y4ORCH ;��=� LOWER THE
TECHNICAL BAR TO DEVELOPING AND DISTRIBUTING DEEP LEARNING APPLICATIONS� MAKING POWERFUL MACHINE LEARNING
TOOLS BROADLY ACCESSIBLE TO PRACTITIONERS�

&ULLY CONNECTED� CONVOLUTIONAL� AND RECURRENT LAYERS HAVE BEEN THE PRIMARY BUILDING BLOCKS IN MODERN
DEEP LEARNING� EACH OF WHICH CARRIES DIFFERENT INDUCTIVE BIASES� WHICH INCENTIVIZE OR CONSTRAIN THE LEARNING
ALGORITHM TO PRIORITIZE ONE SOLUTION OVER ANOTHER� &OR EXAMPLE� CONVOLUTIONAL LAYERS SHARE THEIR UNDERLYING
KERNEL FUNCTION ACROSS SPATIAL DIMENSIONS OF THE INPUT SIGNAL� WHILE RECURRENT LAYERS SHARE ACROSS THE TEMPORAL

�
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Different kinds of graphs
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Some of the graph types

Feature types:

No features

Node features

Edge features

Dense features, e.g. word embeddings

Sparse features
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Typical ML Tasks on GraphsExample: Node Classification
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? ?

?
?

?
Machine 
Learning

Credits: tutorial on graph representation learning at The WebConf. 2018Node classification Link prediction

Graph classification Community detection
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Shallow network embeddings
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Graph neural networks Generative graph models
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…
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Approach

Representation
output

• Node embeddings
• Edge embeddings

• Node embedding
• Edge embeddings
• Subgraph embeddings
• Graph embeddings

Input • Graph structure • Local graph neighborhoods
• Node and edge attributes

• Graph structure
• Node and edge attributes
• Graph attributes

Learning task
• Node property prediction
• Link property prediction

• Node property prediction
• Link property prediction
• Graph property prediction

• Molecular graph generation
• Molecule optimization

Method example DeepWalk, Node2vec, LINE,
Metapath2vec GCN, GIN, GAT, JK-Net GCPN, JT-VAE, GraphRNN

• Graph structure

Figure �: Predominant paradigms in graph representation learning. (a) Shallow network embedding methods generate a
dictionary of representations hC for every node C that preserves the input graph structure information. This is achieved by learning
a mapping function 5H that maps nodes into an embedding space such that nodes with similar graph neighborhoods measured
by function 5< get embedded closer together (Section �.�). Given the learned embeddings, an independent decoder method can
optimize embeddings for downstream tasks, such as node or link property prediction. Method examples include DeepWalk [���],
Node�vec [��], LINE [���], and Metapath�vec [��]. (b) In contrast with shallow network embedding methods, graph neural networks
can generate representations for any graph element by capturing both network structure and node attributes and metadata. The
embeddings are generated through a series of non-linear transformations, i.e., message-passing layers (!9 denotes transformations
at layer 9), that iteratively aggregate information from neighboring nodes at the target node C. GNN models can be optimized
for performance on a variety of downstream tasks (Section �.�). Method examples include GCN [���], GIN [���], GAT [���], and
JK-Net [���]. (c) Generative graph models estimate a distribution landscape Z to characterize a collection of distinct input graphs.
They use the optimized distribution to generate novel graphs b⌧ that are predicted to have desirable properties, e.g., a generated
graph can be represent a molecular graph of a drug candidate. Generative graph models use graph neural networks as encoders
and produce graph representations that capture both network structure and attributes (Section �.�). Method examples include
GCPN [���], JT-VAE [��], and GraphRNN [���]. SI Figure � and SI Note � outline other representation learning techniques.

�

Shallow Network Embedding Methods 

Image Source:  [Li et al., 2022]

Graph Machine Learning (GraphML)
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Shallow network embeddings
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Approach

Representation
output

• Node embeddings
• Edge embeddings

• Node embedding
• Edge embeddings
• Subgraph embeddings
• Graph embeddings

Input • Graph structure • Local graph neighborhoods
• Node and edge attributes

• Graph structure
• Node and edge attributes
• Graph attributes

Learning task
• Node property prediction
• Link property prediction

• Node property prediction
• Link property prediction
• Graph property prediction

• Molecular graph generation
• Molecule optimization

Method example DeepWalk, Node2vec, LINE,
Metapath2vec GCN, GIN, GAT, JK-Net GCPN, JT-VAE, GraphRNN

• Graph structure

Figure �: Predominant paradigms in graph representation learning. (a) Shallow network embedding methods generate a
dictionary of representations hC for every node C that preserves the input graph structure information. This is achieved by learning
a mapping function 5H that maps nodes into an embedding space such that nodes with similar graph neighborhoods measured
by function 5< get embedded closer together (Section �.�). Given the learned embeddings, an independent decoder method can
optimize embeddings for downstream tasks, such as node or link property prediction. Method examples include DeepWalk [���],
Node�vec [��], LINE [���], and Metapath�vec [��]. (b) In contrast with shallow network embedding methods, graph neural networks
can generate representations for any graph element by capturing both network structure and node attributes and metadata. The
embeddings are generated through a series of non-linear transformations, i.e., message-passing layers (!9 denotes transformations
at layer 9), that iteratively aggregate information from neighboring nodes at the target node C. GNN models can be optimized
for performance on a variety of downstream tasks (Section �.�). Method examples include GCN [���], GIN [���], GAT [���], and
JK-Net [���]. (c) Generative graph models estimate a distribution landscape Z to characterize a collection of distinct input graphs.
They use the optimized distribution to generate novel graphs b⌧ that are predicted to have desirable properties, e.g., a generated
graph can be represent a molecular graph of a drug candidate. Generative graph models use graph neural networks as encoders
and produce graph representations that capture both network structure and attributes (Section �.�). Method examples include
GCPN [���], JT-VAE [��], and GraphRNN [���]. SI Figure � and SI Note � outline other representation learning techniques.

�

Shallow Network Embedding Methods 

Image Source:  [Li et al., 2022]

Graph Machine Learning (GraphML)

▪Generate a look up table for node representations

▪Similar nodes get embedded closer

DeepWalk, Node2Vec, NERD, HOPE
Examples :
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Graph Neural Networks (GNNs)
z(ℓ)
i = AGGREGATE ({x(ℓ−1)

i , {x(ℓ−1)
j ∣ j ∈ 𝒩i}})

x(ℓ)
i = TRANSFORM (z(ℓ)

i )

Image Source : https://tkipf.github.io/graph-convolutional-networks/

GCN, GAT, GIN
Examples :
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Our Focus : Explainability of GNNs

Graphs

vs.

Text

Images

Graph example

Why special techniques for Graphs?
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Our Focus : Explainability of GNNs

Graphs

vs.

Text

Images

Graph example

Unlike images and texts, graphs are not grid-like data, which means there is no locality information 


and each node has different numbers of neighbors. Regions like in image are not even defined.

Why special techniques for Graphs?
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Challenges for Graphs

Bob X
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Challenges for Graphs

Bob X

Decision has to be explained not only in terms of features 


but also graph structure. General explainability methods 


cannot be trivially applied for graphs.
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Explanation for GNNs
Explanation types

Node Set Edge Set Node/Edge Features

Input(V, E, X)

PREPRINT 5

1

Input graph

2

34

ܺ

ܣ
Mask generation 

algorithm

0.9 0.7 0.3

Feature mask

Edge mask

Node mask

1

1

1
0

0.9 0.9 0.1 0.0

GNNs

Prediction
Objective function

Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-
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Computational Graph for GNNs
Generative Causal Explanations for Graph Neural Networks

i

kj
m

Figure 1. An illustration of the computation graph (best viewed in
color). Node i is the target node to be explained.

et al., 2017). Taking GCNs as an example, the basic oper-
ator for the neighborhood information aggregation is the
element-wise mean. After L iterations of aggregation, a
node’s representation can capture the structural information
within its L-hop graph neighborhood.

Formally, a graph neural network (GNN) can be written as a
function f (·) : G ! Y or f (·) : V ! Y . The former is a
graph-level classifier, and the latter is a node-level classifier.
Typically, a GNN f (·) is trained with an objective function
L : y ⇥ ỹ ! s that computes a scalar loss s 2 R after
comparing the model’s predictive output ỹ to a ground-truth
output y. The categorical cross-entropy for classification
models is commonly used for such objectives.

Objective. We are given a pre-trained classification model,
represented by f (·), and our ultimate goal is to obtain an
explanation model, denoted as f (·)

exp
, that can provide fast

and accurate explanations for the pre-trained model, which
can also be called a target GNN. Intrinsically, an explanation
is a subgraph that is the most relevant for a prediction —
the outcome of the target GNN, denotes as ỹ. Consistent
with previous studies in the literature (Yuan et al., 2020),
we focus on explanations on graph structures. In particular,
we specifically do not require access to, or knowledge of,
the process by which the classification model produces its
output, nor do we require the classification model to be
differentiable or any specific form. We allow the explainers
to retrieve different predictions by performing queries on
f (·).

3. Methodology
In essence, the core of the GNNs is a neighborhood-based
aggregation process, where a prediction of an instance is
fully determined by its computation graph. Let us use
G

c
i = (V c

i , A
c
i , X

c
i ) to represent the computation graph

of an instance i, where V
c
i is the node set, Ac

i 2 {0, 1}
indicates the adjacency matrix, and X

c
i is the feature ma-

trix of the computation graph. Typically, a GNN learns a
conditional distribution denoted as P (Y |G

c
i ), where Y is

a random variable representing the class labels. For clarity,
let us see an example graph, shown in Figure 1, which will
also be used throughout this paper. In this example, a target
GNN is trained for node classification, and the node i is the

target node to be explained. Oftentimes, the computation
graph of node i is a L-hop subgraph; an exmaple of L = 2
is highlighted in Figure 1.

Therefore, the setting we focus on can be reformulated as
the following: we are given a GNN-based classification
model that processes the computation graph of an instance
(a node or a graph), denoted as Gc, and generates the cor-
responding outputs p (Y |G

c) for predicting ỹ. Unlike the
node classification task, when the target GNN is trained for
graph classification, the computation graph of an instance
will be the entire graph. Accordingly, this work seeks to
generate an explanation, a subgraph of Gc that is most rel-
evant for predicting ỹ, efficiently and automatically. We
use G

s to denote the generated explanation. Our setting is
general and works for any graph learning tasks, including
node classification and graph classification. Our ultimate
goal is to encourage a compact subgraph of the computation
graph to have a large causal influence on the outcome of the
target GNN.

Differences from PGExplainer. PGExplainer is the most
closely related work to our study, as both PGExplainer
and Gem adopt parameterized networks to provide local
and global views for model explanations. However, PGEx-
plainer relies on node embeddings from the target GNN to
learn a multilayer perceptron, which may not be obtained
without knowing its internal model structure. In contrast,
to explain an instance (a node or a graph), Gem simply in-
puts the original computation graph into the explainer and
outputs a compact explanation graph. In other words, Gem

does not require any prior knowledge of the internal model
structure (the target GNN) and parameters, or any prior
knowledge of the motifs associated with the graph learning
tasks. Therefore, it exhibits better generalization abilities.
In what follows, we will present Gem, our model-agnostic
approach for providing interpretable explanations for any
GNNs on a variety of graph learning tasks. The design
of Gem is based upon principles of causality, in particular
Granger causality (Granger, 1969).

Granger causality (Granger, 1969; 1980). In general,
Granger causality describes the relationships between two
(or more) variables when one is causing the other. Specif-
ically, if we are better able to predict variable ỹ using all
available information U than if the information apart from
variable xi had been used, we say that xi Granger-causes
ỹ (Granger, 1980), denoted by xi ! ỹ

1.

The crux of our approach is to train an explanation model,
or an explainer, to explain the target graph neural network.
Specifically, Gem is trained with the guidance built on
the first principles of Granger causality. Here we extend

1We are aware of the drawbacks of reusing notations. xi and
ỹ in this definition represent any random variables for simplicity.

Computational graph for 
node i corresponding to 
a 2-layer GNN

At inference time decision of a GNN on a particular node can be 
attributed to important nodes/edges and their features in its 

computational graph.

Image Source:  [Lin et al., 2021]
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An example explanation

Computation Graph for node n

Feature Mask

N
od

e 
M

as
k

“Attention 
is all you 

need”

Computation Graph for node n

Feature Mask

N
od

e 
M

as
k

Graphs NeuralTrainingConvexDeep Metrics….

LIME

Planetoid

NERD

Graph

Sage

Node2

Vec

GCN

Deep

Walk

Transfor

mers

Computation graph for the node 
representing the paper 


“Graph Attention Network”

Prediction class label:  “GNN”

Example Explanation 

The learnt model focusses for the prediction “GNN”

1) Features (Words in this example) 


• “Graphs” 

• “Neural”


2) Neighbourhood Nodes (Papers in this example): 

• Transformers (Vaswani et al. ‘17)

• GraphSage (Hamilton et al. ‘17)

• GCN  (Kipf & Welling ‘16)
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Explaining GraphML models
• Explaining/interpreting decisions of models learnt over 

graph data

Explainability in Graph Machine
Learning 
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Explaining GraphML models
• Explaining/interpreting decisions of models learnt over 

graph data

Explainability in Graph Machine
Learning 

Post-hoc explanations Interpretability by design 

Instance-level Global
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Post hoc Vs. Interpretability by design

Post-hoc explanations Inherently interpretable models

Explaining an already trained 

complex model 


does not affect its performance 

Simpler inherently interpretable models

could incur loss of performance

Explanations might not be faithful to the 

model

Explanations are by design faithful to the 

model
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This tutorial- Explainability of GNNs

Approaches for Post-hoc Explainability

Evaluation of Explanations

Hands on Session
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Approaches for Post-hoc Explainability
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Approaches for Post-hoc Explainability

Instance-wise or 

Local explanations Global explanations

Explain individual predictions Ideally should explain complete 
model behaviour 

Help to judge if individual predictions 
are right for the right reasons

Help to judge if the model at a 
higher level is suitable for 
deployment

Shed light on local biases Shed light on big picture biases 
affecting larger subgroups
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Instance-level Explanations

• Explain individual predictions using local structure of the given 
instance

Instance-level 

Perturbation 
based


Surrogate 
model based


Decomposition 
methods
Gradient based


Grad, GradCam, 

IntegratedGradients

GNNExplainer, Zorro, 

PGExplainer

PGMExplainer, 

GraphLIME LRP, GNN-LRP
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Gradient based Explainers
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Gradient based Explainers

• Model F with n-dimensional input and c classes. 


• The class specific logic is given by

Image Source : https://explainml-tutorial.github.io

https://explainml-tutorial.github.io
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Gradient based Explainers

Image Source : https://explainml-tutorial.github.io

https://explainml-tutorial.github.io
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Gradient based Explainers

• Gradient (Grad)

• GradInput

• SmoothGrad

• IntegratedGrad
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Gradient based Explainers for GNNs

X′￼ = AXθSimplified GNN 

Adjacency Matrix Feature Matrix Weights Matrix

Node importance (column-wise gradient)
δ

δxi
X′￼

Feature importance
δ

δxj
X′￼ (row-wise gradient)

Edge importance
δ

δaij
X′￼
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Perturbation based Explainers
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

masks for nodes. The soft masks contain continuous values
between [0, 1] and the mask generation algorithm can be
directly updated by back-propagation. However, soft masks
are suffered from the “introduced evidence” problem [14]
that any non-zero or non-one value in the mask may in-
troduce new semantic meaning or new noise to the input
graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [66]. Furthermore, recent studies [50],
[67], [68] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [46] learns soft masks for edges and node
features to explain the predictions via mask optimization. To
obtain masks, it randomly initializes soft masks and treats
them as trainable variables. Then GNNExplainer combines
the masks with the original graph via element-wise multi-
plications. Next, the masks are optimized by maximizing the
mutual information between the predictions of the original
graph and the predictions of the newly obtained graph.
Even though different regularization terms, such as element-
wise entropy, are employed to encourage optimized masks
to be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [47] learns approximated discrete masks
for edges to explain the predictions. To obtain edge masks,

it trains a parameterized mask predictor to predict edge
masks. Given an input graph, it first obtains the embeddings
for each edge by concatenating the corresponding node
embeddings. Then the predictor uses the edge embeddings
to predict the probability of each edge being selected,
which can be treated as the importance score. Next, the
approximated discrete masks are sampled via the reparam-
eterization trick. Finally, the mask predictor is trained by
maximizing the mutual information between the original
predictions and new predictions. Note that even though the
reparameterization trick is employed, the obtained masks
are not strictly discrete but can largely alleviate the “intro-
duced evidence” problem. In addition, since all edges in
the dataset share the same predictor, the explanations can
provide a global understanding of the trained GNNs.

GraphMask [57] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [68] and reparame-
terization trick are employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [56] employs discrete masks to identify impor-
tant input nodes and node features. Given an input graph,
a greedy algorithm is used to select nodes or node features
step by step to obtain discrete masks for nodes and features.
For each step, ZORRO selects one node or one node feature
with the highest fidelity score. Note that the objective func-

Image Source : Yuan et al. 2021

Perturbation based Explainers

Key Idea: Given a trained GNN, generate a mask over the input features/
nodes/edges such that the masked input leads to the similar prediction as the 

original one produced using the whole input.
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Example 1 : GNNExplainer
[ Ying et al. NeurIPS 2019 ]

https://arxiv.org/abs/1903.03894

Key Idea 

Find an explanation such that the mutual information between the 


explanation and the original prediction is maximized

Explanation Type

Continuous importance scores over features and edges


(Soft edge and feature masks)
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Example 1 : GNNExplainer
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [64]. Furthermore, recent studies [48],
[65], [66] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [44] learns soft masks for edges and node
features to explain the predictions via mask optimization.
The soft masks are randomly initialized and treated as train-
able variables. Then GNNExplainer combines the masks
with the original graph via element-wise multiplications.
Next, the masks are optimized by maximizing the mutual
information between the predictions of the original graph
and the predictions of the newly obtained graph. Even
though different regularization terms, such as element-wise
entropy, are employed to encourage optimized masks to
be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [45] learns approximated discrete masks
for edges to explain the predictions. It trains a parameter-
ized mask predictor to predict edge masks. Given an input
graph, it first obtains the embeddings for each edge by
concatenating node embeddings. Then the predictor uses
the edge embeddings to predict the probability of each
edge being selected, which can be treated as the importance
score. Next, the approximated discrete masks are sampled

via the reparameterization trick. Finally, the mask predictor
is trained by maximizing the mutual information between
the original predictions and new predictions. Note that
even though the reparameterization trick is employed, the
obtained masks are not strictly discrete but can largely
alleviate the “introduced evidence” problem. In addition,
since all edges in the dataset share the same predictor,
the explanations can provide a global understanding of the
trained GNNs.

GraphMask [55] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [66] and reparame-
terization trick is employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [54] employ discrete masks to identify impor-
tant input nodes and node features. Given an input graph, a
greedy algorithm is used to select nodes or node features
step by step. For each step, ZORRO selects one node or
one node feature with the highest fidelity score. Note that
the objective function, fidelity score, measure how the new
predictions match the original predictions of the model by
fixing the selected nodes/features and replacing the others
with random noise values. Since there is no training proce-
dure involved, the non-differentiable limitation of discrete
masks is avoided. In addition, by using hard masks, ZORRO
is not suffered from the “introduced evidence” problem.
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [64]. Furthermore, recent studies [48],
[65], [66] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [44] learns soft masks for edges and node
features to explain the predictions via mask optimization.
The soft masks are randomly initialized and treated as train-
able variables. Then GNNExplainer combines the masks
with the original graph via element-wise multiplications.
Next, the masks are optimized by maximizing the mutual
information between the predictions of the original graph
and the predictions of the newly obtained graph. Even
though different regularization terms, such as element-wise
entropy, are employed to encourage optimized masks to
be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [45] learns approximated discrete masks
for edges to explain the predictions. It trains a parameter-
ized mask predictor to predict edge masks. Given an input
graph, it first obtains the embeddings for each edge by
concatenating node embeddings. Then the predictor uses
the edge embeddings to predict the probability of each
edge being selected, which can be treated as the importance
score. Next, the approximated discrete masks are sampled

via the reparameterization trick. Finally, the mask predictor
is trained by maximizing the mutual information between
the original predictions and new predictions. Note that
even though the reparameterization trick is employed, the
obtained masks are not strictly discrete but can largely
alleviate the “introduced evidence” problem. In addition,
since all edges in the dataset share the same predictor,
the explanations can provide a global understanding of the
trained GNNs.

GraphMask [55] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [66] and reparame-
terization trick is employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [54] employ discrete masks to identify impor-
tant input nodes and node features. Given an input graph, a
greedy algorithm is used to select nodes or node features
step by step. For each step, ZORRO selects one node or
one node feature with the highest fidelity score. Note that
the objective function, fidelity score, measure how the new
predictions match the original predictions of the model by
fixing the selected nodes/features and replacing the others
with random noise values. Since there is no training proce-
dure involved, the non-differentiable limitation of discrete
masks is avoided. In addition, by using hard masks, ZORRO
is not suffered from the “introduced evidence” problem.
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [64]. Furthermore, recent studies [48],
[65], [66] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [44] learns soft masks for edges and node
features to explain the predictions via mask optimization.
The soft masks are randomly initialized and treated as train-
able variables. Then GNNExplainer combines the masks
with the original graph via element-wise multiplications.
Next, the masks are optimized by maximizing the mutual
information between the predictions of the original graph
and the predictions of the newly obtained graph. Even
though different regularization terms, such as element-wise
entropy, are employed to encourage optimized masks to
be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [45] learns approximated discrete masks
for edges to explain the predictions. It trains a parameter-
ized mask predictor to predict edge masks. Given an input
graph, it first obtains the embeddings for each edge by
concatenating node embeddings. Then the predictor uses
the edge embeddings to predict the probability of each
edge being selected, which can be treated as the importance
score. Next, the approximated discrete masks are sampled

via the reparameterization trick. Finally, the mask predictor
is trained by maximizing the mutual information between
the original predictions and new predictions. Note that
even though the reparameterization trick is employed, the
obtained masks are not strictly discrete but can largely
alleviate the “introduced evidence” problem. In addition,
since all edges in the dataset share the same predictor,
the explanations can provide a global understanding of the
trained GNNs.

GraphMask [55] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [66] and reparame-
terization trick is employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [54] employ discrete masks to identify impor-
tant input nodes and node features. Given an input graph, a
greedy algorithm is used to select nodes or node features
step by step. For each step, ZORRO selects one node or
one node feature with the highest fidelity score. Note that
the objective function, fidelity score, measure how the new
predictions match the original predictions of the model by
fixing the selected nodes/features and replacing the others
with random noise values. Since there is no training proce-
dure involved, the non-differentiable limitation of discrete
masks is avoided. In addition, by using hard masks, ZORRO
is not suffered from the “introduced evidence” problem.

Figure 2: Illustration of PGExplainer for explaining GNNs on graph classification. (1) The left part
demonstrates the explanation network. It takes node representations Z as well as the original graph
Go as inputs to compute ⌦, the latent variables in edge distributions. Edge distributions are severed as
the explanation. In case that an explanatory subgraph is wanted, we select top-ranked edges according
to latent variables ⌦. (2) A random graph Ĝs is sampled from edge distributions and then feed to the
trained GNN model to get the prediction Ŷs. (3) Parameter  in the explanation network is optimized
with cross-entropy between the original prediction Yo and the updated prediction Ŷs.

binary concrete distribution as the instantiation [36]. Specifically, the weight êij 2 (0, 1) of edge
(i, j) in Ĝs is calculated by:

✏ ⇠ Uniform(0, 1), êij = �((log ✏� log(1� ✏) + !ij)/⌧), (4)
where �(·)is the Sigmoid function, and !ij 2 R is the parameter. When ⌧ ! 0, the weight
êij is binarized with lim⌧!0 P (êij = 1) = exp(!ij)

1+exp(!ij)
. Since P (eij = 1) = ✓ij , by choosing

!ij = log ✓ij
1�✓ij

, we have lim⌧!0 Ĝs = Gs. This demonstrates the rationality of using binary
concrete distribution to approximate the Bernoulli distribution. Moreover, with temperature ⌧ > 0,
the objective function is smoothed with a well-defined gradient @êij

@!ij
.Thus, with reparameterization,

the objective in Eq. (3) becomes:

min
⌦

E✏⇠Uniform(0,1)H(Yo|G = Ĝs) (5)

Considering efficient optimization, we follow [53] to modify the conditional entropy with cross-
entropy H(Yo, Ŷs), where Ŷs is the prediction of the GNN model with Ĝs as the input. With the
above relaxations, we adopt Monte Carlo to approximately optimize the objective function:

min
⌦

E✏⇠Uniform(0,1)H(Yo, Ŷs) ⇡ min
⌦

� 1

K

KX

k=1

CX

c=1

P (Yo = c) logP (Ŷs = c)

=min
⌦

� 1

K

KX

k=1

CX

c=1

P�(Y = c|G = Go) logP�(Y = c|G = Ĝ(k)
s ),

(6)

where � denotes the parameters in the trained GNN, K is the total number of sampled graph, C is
the number of labels, and Ĝ(k)

s is the k-th sampled graph with Eq. (4), parameterized by ⌦.

4.3 Explanation of graph neural networks with a global view

Although explanations provided by the leading method GNNExplainer [53] preserve the local fidelity,
they do not help to understand the general picture of the model across a population [50]. Furthermore,
various GNN based models have been applied to analyze graph data with millions of instances [52],
the cost of applying local explanations one-by-one can be prohibitive with such large datasets in
practice. On the other hand, explanations with a global view of the model ascertain users’ trust [39].
Furthermore, these models can generalize explanations to new instances without retraining, making it
more efficient to explain large scale datasets.

To have a global view of a GNN model, our method collectively explains predictions made by a
trained model on multiple instances. Instead of treating ⌦ in Eq. (6) as independent variables, we
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Fig. 2. The general pipeline of the perturbation-based methods. They employ different mask generation algorithms to obtain different types of masks.
Note that the mask can correspond to nodes, edges, or node features. In this example, we show a soft mask for node features, a discrete mask
for edges, and an approximated discrete mask for nodes. Then the mask is combined with the input graph to capture important input information.
Finally, the trained GNNs evaluate whether the new prediction is similar to the original prediction and can provide guidance for improving the mask
generation algorithms.

graph, thus affecting the explanation results. Meanwhile,
the discrete masks only contain discrete values 0 and 1,
which can avoid the “introduced evidence” problem since
no new numerical value is introduced. However, discrete
masks always involve non-differentiable operations, such
as sampling. One popular way to solve it is the policy
gradient technique [64]. Furthermore, recent studies [48],
[65], [66] propose to employ reparameterization tricks, such
as Gumbel-Softmax estimation and sparse relaxations, to
approximate the discrete masks. Note that the output mask
is not strictly discrete but provides a good approxima-
tion, which not only enables the back-propagation but also
largely alleviates the “introduced evidence” problem.

4.2.2 Methods
GNNExplainer [44] learns soft masks for edges and node
features to explain the predictions via mask optimization.
The soft masks are randomly initialized and treated as train-
able variables. Then GNNExplainer combines the masks
with the original graph via element-wise multiplications.
Next, the masks are optimized by maximizing the mutual
information between the predictions of the original graph
and the predictions of the newly obtained graph. Even
though different regularization terms, such as element-wise
entropy, are employed to encourage optimized masks to
be discrete, the obtained masks are still soft masks so
that GNNExplainer cannot avoid the “introduced evidence”
problem. In addition, the masks are optimized for each
input graph individually and hence the explanations may
lack a global view.

PGExplainer [45] learns approximated discrete masks
for edges to explain the predictions. It trains a parameter-
ized mask predictor to predict edge masks. Given an input
graph, it first obtains the embeddings for each edge by
concatenating node embeddings. Then the predictor uses
the edge embeddings to predict the probability of each
edge being selected, which can be treated as the importance
score. Next, the approximated discrete masks are sampled

via the reparameterization trick. Finally, the mask predictor
is trained by maximizing the mutual information between
the original predictions and new predictions. Note that
even though the reparameterization trick is employed, the
obtained masks are not strictly discrete but can largely
alleviate the “introduced evidence” problem. In addition,
since all edges in the dataset share the same predictor,
the explanations can provide a global understanding of the
trained GNNs.

GraphMask [55] is a post-hoc method for explaining
the edge importance in each GNN layer. Similar to the
PGExplainer, it trains a classifier to predict whether an edge
can be dropped without affecting the original predictions.
However, GraphMask obtains an edge mask for each GNN
layer while PGExplainer only focuses the input space. In ad-
dition, to avoiding changing graph structures, the dropped
edges are replaced by learnable baseline connections, which
are vectors with the same dimensions as node embeddings.
Note that binary Concrete distribution [66] and reparame-
terization trick is employed to approximate discrete masks.
In addition, the classifier is trained using the whole dataset
by minimizing a divergence term, which measures the
difference between network predictions. Similar to PGEx-
plainer, it can largely alleviate the “introduced evidence”
problem and provide a global understanding of the trained
GNNs.

ZORRO [54] employ discrete masks to identify impor-
tant input nodes and node features. Given an input graph, a
greedy algorithm is used to select nodes or node features
step by step. For each step, ZORRO selects one node or
one node feature with the highest fidelity score. Note that
the objective function, fidelity score, measure how the new
predictions match the original predictions of the model by
fixing the selected nodes/features and replacing the others
with random noise values. Since there is no training proce-
dure involved, the non-differentiable limitation of discrete
masks is avoided. In addition, by using hard masks, ZORRO
is not suffered from the “introduced evidence” problem.

Figure 2: Illustration of PGExplainer for explaining GNNs on graph classification. (1) The left part
demonstrates the explanation network. It takes node representations Z as well as the original graph
Go as inputs to compute ⌦, the latent variables in edge distributions. Edge distributions are severed as
the explanation. In case that an explanatory subgraph is wanted, we select top-ranked edges according
to latent variables ⌦. (2) A random graph Ĝs is sampled from edge distributions and then feed to the
trained GNN model to get the prediction Ŷs. (3) Parameter  in the explanation network is optimized
with cross-entropy between the original prediction Yo and the updated prediction Ŷs.

binary concrete distribution as the instantiation [36]. Specifically, the weight êij 2 (0, 1) of edge
(i, j) in Ĝs is calculated by:

✏ ⇠ Uniform(0, 1), êij = �((log ✏� log(1� ✏) + !ij)/⌧), (4)
where �(·)is the Sigmoid function, and !ij 2 R is the parameter. When ⌧ ! 0, the weight
êij is binarized with lim⌧!0 P (êij = 1) = exp(!ij)

1+exp(!ij)
. Since P (eij = 1) = ✓ij , by choosing

!ij = log ✓ij
1�✓ij

, we have lim⌧!0 Ĝs = Gs. This demonstrates the rationality of using binary
concrete distribution to approximate the Bernoulli distribution. Moreover, with temperature ⌧ > 0,
the objective function is smoothed with a well-defined gradient @êij

@!ij
.Thus, with reparameterization,

the objective in Eq. (3) becomes:

min
⌦

E✏⇠Uniform(0,1)H(Yo|G = Ĝs) (5)

Considering efficient optimization, we follow [53] to modify the conditional entropy with cross-
entropy H(Yo, Ŷs), where Ŷs is the prediction of the GNN model with Ĝs as the input. With the
above relaxations, we adopt Monte Carlo to approximately optimize the objective function:

min
⌦

E✏⇠Uniform(0,1)H(Yo, Ŷs) ⇡ min
⌦

� 1

K

KX

k=1

CX

c=1

P (Yo = c) logP (Ŷs = c)

=min
⌦

� 1

K

KX

k=1

CX

c=1

P�(Y = c|G = Go) logP�(Y = c|G = Ĝ(k)
s ),

(6)

where � denotes the parameters in the trained GNN, K is the total number of sampled graph, C is
the number of labels, and Ĝ(k)

s is the k-th sampled graph with Eq. (4), parameterized by ⌦.

4.3 Explanation of graph neural networks with a global view

Although explanations provided by the leading method GNNExplainer [53] preserve the local fidelity,
they do not help to understand the general picture of the model across a population [50]. Furthermore,
various GNN based models have been applied to analyze graph data with millions of instances [52],
the cost of applying local explanations one-by-one can be prohibitive with such large datasets in
practice. On the other hand, explanations with a global view of the model ascertain users’ trust [39].
Furthermore, these models can generalize explanations to new instances without retraining, making it
more efficient to explain large scale datasets.

To have a global view of a GNN model, our method collectively explains predictions made by a
trained model on multiple instances. Instead of treating ⌦ in Eq. (6) as independent variables, we
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Example 2:  Zorro
[ Funke et al. TKDE 2022 ]

https://arxiv.org/abs/2105.08621

Key Idea 

Compute a valid, sparse and stable explanation such that the prediction using the 


explanation is in expectation close to the original prediction

Explanation Type

Binary importance scores over features and nodes


(Hard node and feature masks)
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Valid Explanation

A subset of the input such that the prediction while just using the

 input stays the same as the original prediction is a valid explanation

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
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Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
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Sparsity

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
In addition the chosen subset (explanation) should be sparse
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The chosen subset (explanation) should be sparse
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Stability
What happens to the not selected part of the input?

What about Stability?

What happens to the not selected pat of the input?
We aim for having a stable explanation.
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▪ Set the not selected part by some 
noisy values.

▪ Check the expected prediction over 
multiple such perturbations.


A stable explanation is one which achieves in expectation a 
close prediction to that of the original prediction
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Constructing a perturbed input

Constructing a Perturbed Input

Let S = {Vs ,Fs} be the explanation with selected nodes Vs and selected
features Fs .

The selected features and nodes are colored green

Perturbed Input

Construct Ys by setting features Fs of nodes in Vs to their true values and
setting rest to random values.

YS = X � M(S) + Z � ( � M(S)),Z ⇠ N

Dr. Megha Khosla, Dr. Thorben Funke ML4G 08.12.2021 24 / 28

Selected nodes and features are marked green

Construct a perturbed input  by setting selected features of selected nodes 

(the green cells) to their true values and others to random noisy values

Mathematically if M(S) corresponds to product of feature and node masks

Y𝒮 = X ⊙ M(𝒮) + Z ⊙ (1 − M(𝒮)), Z ∼ 𝒩
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RDT-Fidelity of an explanation

Zorro 

Find the sparsest explanation such that its RDT-fidelity is maximised.

Computation Graph for node n

Feature Mask

N
od

e 
M

as
k

with

ℱ(𝒮) = 𝔼Y𝒮|Z∼𝒩 [1f(X)=f(Y𝒮)]

Y𝒮 = X ⊙ M(𝒮) + Z ⊙ (1 − M(𝒮)), Z ∼ 𝒩
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Surrogate Model Based
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Surrogate Model based
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Fig. 3. The general pipeline of the surrogate methods. Given an input graph and its prediction, they first sample a local dataset to represent
the relationships around the target data. Then different surrogate methods are applied to fit the local dataset. Note that surrogate models are
generally simple and interpretable ML models. Finally, the explanations from the surrogate model can be regarded as the explanations of the
original prediction.

tion, fidelity score, measure how the new predictions match
the original predictions of the model by fixing the selected
nodes/features and replacing the others with random noise
values. Since there is no training procedure involved, the
non-differentiable limitation of discrete masks is avoided.
In addition, by using hard masks, ZORRO is not suffered
from the “introduced evidence” problem. However, the
greedy mask selection algorithm may lead to local optimal
explanations. In addition, the explanations may lack a global
understanding since masks are generated for each graph
individually.

Causal Screening [58] studies the causal attribution
of different edges in the input graph as explanations. It
identifies an edge mask for the explanatory subgraph. The
key idea of causal attribution is to study the change of
predictions when adding an edge into the current explana-
tory subgraph, known as the causal effect. To obtain edge
masks for each step, it studies the causal effects of different
edges and selects the edge with the highest causal effect to
add to the explanatory subgraph. Specifically, it employs
the individual causal effect (ICE) to select edges, which
measures mutual information (between the predictions of
original graphs and the explanatory subgraphs) difference
after adding different edges to the subgraph. Similar to
ZORRO, Causal Screening is a greedy algorithm generating
discrete masks without any training procedure. Hence, it is
not suffered from the “introduced evidence” problem but
may lack a global understanding and stuck in local optimal
explanations.

SubgraphX [48] explores subgraph-level explanations
for deep graph models. It employs the Monte Carlo Tree
Search (MCTS) algorithm [69] to efficiently explore different
subgraphs via node pruning and select the most important
subgraph from the leaves of the search tree as the expla-
nation of the prediction. In addition, it employs Shapley
value [70] as the reward of MCTS to measure the importance
of subgraphs and proposes an efficient approximation of
Shapley value by only considering the interactions within
message passing range. While SubgraphX is not directly
studying masks, the MCTS algorithm can be understood as
the mask generation algorithm and its node pruning actions

can be regarded as different masks to obtain subgraphs.
In addition, the Shapley values can be treated as the ob-
jective function to update the mask generation algorithm.
Compared with other perturbation-based methods, its ob-
tained subgraphs are more human-intelligible and suitable
for graph data. However, the computational cost is more
expensive since it needs to explore different subgraphs with
the MCTS algorithm.

4.3 Surrogate Methods
In this section, we introduce the surrogate methods for
explaining deep graph models.

4.3.1 A unified view
Deep models are challenging to explain because of the
complex and non-linear relationships between the input
space and output predictions. A popular way to provide
instance-level explanations for image models is known as
surrogate method. The underlying idea is to employ a sim-
ple and interpretable surrogate model to approximate the
predictions of the complex deep model for the neighboring
areas of the input example. Note that these methods assume
that the relationships in the neighboring areas of the input
example is less complex and can be well captured by a
simpler surrogate model. Then the explanations from the
interpretable surrogate model are used to explain the orig-
inal prediction. Applying surrogate methods to the graph
domain is challenging since graph data are discrete and
contain topology information. Then it is not clear how to
define the neighboring regions of the input graph and what
interpretable surrogate models are suitable.

Recently, several surrogate methods are proposed to
explain deep graph models, including GraphLime [61],
RelEx [62], and PGM-Explainer [63]. The general pipeline
of these methods is shown in Figure 3. To explain the
prediction of a given input graph, they first obtain a local
dataset containing multiple neighboring data objects and
their predictions. Then they fit a interpretable model to
learn the local dataset. Finally, the explanations from the
interpretable model are regarded as the explanations of the

Key Idea: Given an input graph and its prediction, sample a local dataset to 
represent the relationships around the target data. Surrogate methods which 

are usually interpretable by design are applied to fit the sampled local dataset. 
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Example:  PGMExplainer
[ Wu and Thai, NeurIPS 2020 ]

https://arxiv.org/abs/2010.05788

Key Idea 

Fits an interpretable model to a local perturbed dataset 

Explanation Type

Hard node masks


(Top nodes are output based on node importances)

https://arxiv.org/abs/2010.05788
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Example : PGMExplainer

motifs and some random edges.2 Nodes are assigned into four classes based on their roles as shown
by different color in Fig. 1a. A ground-truth explanation of a prediction on a node in a motif is all the
nodes in the motif. In this example, the target of explanation is the role "purple" of node E in Fig. 1b.
Our PGM-Explainer is able to identify all nodes in the motif and constructs a PGM approximating
the target prediction (Fig. 1c). Different from existing explainers, PGM-Explainer provides statistical
information on the contributions of graph’s components in term of conditional probabilities. For
example, without knowing any information on E’s neighborhood, the PGM explanation approximates
a probability of predicting E to be "purple" is 47.2%. If PGM knew a prediction of node A and its
realization, that probability is increased to 65.8%. This information not only helps users evaluate the
contribution of each explained features on the target prediction but also provides intuition on their
interactions in constituting that prediction.

Major Components of PGM-Explainer. PGM-Explainer consists of three major steps: data genera-
tion, variables selection, and structure learning, which are summarized in Fig. 2. The data generation
step is to generate, preprocess and record a set of input-output pairs, called sampled data, of the
prediction to be explained. The variables selection step eliminates unimportant variables from the
sampled data to improve the running time and encourage compact explanations. The final step,
structure learning, takes the filtered data from the previous step and generates a PGM explanation.
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Figure 2: The architecture of PGM-Explainer. Given input graph G and a prediction to be explained,
PGM-Explainer generates perturbed graphs and records GNN’s predictions on those graphs in the
data generation step. The variable selection step eliminates unimportant explained features in this
data and forwards the filtered data. Finally, the PGM is generated in the structure learning step.

3.1 Data Generation

The goal of the data generation step in PGM-Explainer is to generate a set of sampled data Dt from
the target function �t. In the consequence steps, the PGM will be learnt from this sampled data
Dt. Since the explainer aims to capture the behaviors of �t, especially at the neighborhoods of
input graph G, PGM-Explainer first perturbs some features of G to obtain a set of perturbed samples.
Specifically, we fix a parameter p 2 (0, 1) representing a probability that the features in each node is
perturbed. For each node v in G, we introduce a random variable sv indicating whether the features
on v is perturbed. The perturbation scheme might vary depending on applications since we want the
perturbed graph to be in the vicinity of G. We implement different perturbing algorithms; however,
the scheme used in this paper is simply setting the node features to the mean value among all nodes.
For each realization of s = {sv}v2V , we obtain an induced graph G(s) 2 G. The prediction �(G(s))
on the induced graph is then obtained by feeding G(s) through the GNN.

In a node classification task, for each perturbation, the realization of node variable v =
{sv, I(�(G(s))v)} is recorded into Dt, where I(.) is a function indicating whether the prediction
�(G(s))v is different significantly from the original prediction �(G)v. Intuitively, v encodes both
the influence of features of node v onto the graph’s prediction and the influence of the overall changes
in the graph to the prediction on v. In our implementations of PGM-Explainer, sv and I(.) are stored
in binary values and the domain of v is consequently implemented using only two bits. If the GNN
has L graph neural network layers, the prediction on t can only be influenced by L-hop neighbors of
t. Hence, the explainer only needs to examine the L-hop neighbors of t. Thus, for each realization
s, PGM-Explainer only records v for v 2 NeGt where NeGt is L-hop neighbors of t in G. After n

2A scale-free network is a network whose degree distribution follows power law. The Barabási-Albert graph
is a scale-free network generated by the Barabási–Albert model [31]

4

[ Wu and Thai, NeurIPS 2020 ]

Fit a Bayesian model on the perturbed data to obtain node importances

Generate a local dataset by randomly perturbating features of nodes in the computational

graph and corresponding predictions.
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Global Explanations

Collection of Local 
Explanations Model Distillation Prototype based
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Collection of Local Explanations

▪  Generate a local explanation for each instance
▪  Pick a subset of k explanations to constitute a global explanation

Image credit : ExplainML tutorial AAAI 21

 So far no explainer for graph data follow this strategy
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Model Distillation 

/DEHO��
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�
�
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�
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�
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�

Image credit : ExplainML tutorial AAAI 21

GNN

 Viable strategy but so far no explainer for graph data follow this strategy
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Global Explanations by XGNN

Graph set

Human 
observation

GNNs

Prediction

Maximize

Graph
rules

Valid

Graph generator

Step 0 Step 1 Step 2 Step 3

Rewards

Generated 
graph

Figure 1: Illustrations of our proposed XGNN for graph interpretation via graph generation. The GNNs represent a trained
graph classi�cation model that we try to explain. All graph examples in the graph set are classi�ed to the third class. The
left part shows that we can manually conclude the key graph patterns for the third class but it is challenging. The right part
shows that we propose to train a graph generator to generate graphs that can maximize the class score and be valid according
to graph rules.

prediction into a combination of its inputs. In addition, both of
these studies generate input-dependent explanations for individual
examples. To verify and understand a deep model, humans need to
check explanations for all examples, which is time-consuming or
even not feasible.

While input-dependent explanations are important for under-
standing deep models, model-level interpretations should not be
ignored. However, none of the existing work investigates the model-
level interpretations of deep graph models. In this work, we argue
that model-level interpretations can provide higher-level insights
and a more general understanding in how a deep learning model
works. Therefore, we aim at providing model-level interpretations
for GNNs. We propose a novel method, known as XGNN, to explain
GNNs by graph generation such that the generated graphs can
maximize a certain behavior.

3 XGNN: EXPLAINABLE GRAPH NEURAL
NETWORKS

3.1 Model-Level GNN Interpretation
Intuitively, given a trained GNN model, the model-level interpre-
tations for it should explain what graph patterns or sub-graph
patterns lead to a certain prediction. For example, one possible
type of patterns is known as network motifs that represent simple
building blocks of complex networks (graphs), which widely exist
in graphs from biochemistry, neurobiology, ecology, and engineer-
ing [1, 2, 23, 30]. Di�erent motif sets can be found in graphs with
di�erent functions [1, 23], which means di�erent motifs may di-
rectly relate to the functions of graphs. However, it is still unknown
whether GNNs make predictions based on such motifs or other
graph information. By identifying the relationships between graph
patterns and the predictions of GNNs, we can better understand the

models and verify whether a model works as expected. Therefore,
we propose our XGNN, which explains GNNs using such graph
patterns. Speci�cally, in this work, we investigate the model-level
interpretations of GNNs for graph classi�cation tasks and the graph
patterns are obtained by graph generations.

Formally, let f (·) denote a trained GNN classi�cation model, and
� 2 {c1, · · · , c`} denote the classi�cation prediction. Given f (·) and
a chosen class ci , i 2 {1, · · · , `}, our goal is to investigate what input
graph patterns maximize the predicted probability for this class.
The obtained patterns can be treated as model-level interpretations
with respect to ci . Formally, the task can be de�ned as

G
⇤ = argmax

G
P(f (G) = ci ), (2)

where G⇤ is the optimized input graph we need. A popular way to
obtain such optimized input for interpreting image and text models
is known as input optimization [8, 24–26, 43]. However, as dis-
cussed in Section 2.2, such optimization method cannot be applied
to interpret graph models because of the special representations
of graph data. Instead, we propose to obtain the optimized graph
G
⇤ via graph generation. The general illustration of our proposed

method is shown in Figure 1. Given a pre-trained graph classi�ca-
tion model, we interpret it by providing explanations for its third
class. Wemaymanually conclude the graph patterns from the graph
dataset. By evaluating all graph examples in the dataset, we can
obtain the graphs that are predicted to be the third class. Then we
can manually check what are the common graph patterns among
these graphs. For example, the left part of Figure 1 shows that a set
of four graphs are classi�ed into the third class. Based on human
observations, we know that the important graph pattern leading
to the prediction is the triangle pattern consisting of a red node,
a yellow node, and a blue node. However, such manual analysis
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[ Yuan et al., 2020 ]

https://arxiv.org/abs/2006.02587

Key Idea: Generate graph,  which maximise the prediction probability of

a particular class: 

G⋆

G⋆ = argmax
G

ℙ( f(G) = c)

https://arxiv.org/abs/2006.02587
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Node Features
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Combine GCNs MLPs MLPs 1
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2
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ܺ

ܣ
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Figure 2: An Illustration of our graph generator for processing a single step. Di�erent colors denote di�erent types of node.
Given a graph with 4 nodes and a candidate set with 3 nodes, we �rst combine them together to obtain the feature matrix
and the adjacency matrix. Then we employ several GCN layers to aggregate and learn node features. Next, the �rst MLPs
predict a probability distribution from which we sample the starting node. Finally, the second MLPs predict the ending node
conditioned on the starting node. Note that the black crosses indicates masking out nodes.

the selected node, we employ the second MLPs to compute the
probability distribution of the ending node pt ,end from which we
sample the ending node action at ,end . Note that since the starting
node and the ending node cannot be the same, we apply a mask
mt ,end to mask out the node selected by at ,star t . Mathematically,
it can be written as

pt ,end = Softmax(MLPs([bX ,bxstar t ])), (7)
at ,end ⇠ pt ,end ·mt ,end , (8)

where [·, ·] denotes broadcasting and concatenation. In addition,
mt ,end is the mask consisting of all 1s except the position indicating
at ,star t . Note that the same graph generator �� (·) is shared by
di�erent time steps, and our generator is capable to incorporate
graphs with variable sizes.

We illustrate our graph generator in Figure 2 where we show
the graph generation procedure for one step. The current graphGt
consists of 4 nodes and the candidate set has 3 available nodes. They
are combined together to serve as the input of the graph generator.
The embeddings of candidate nodes are concatenated to the feature
matrix of Gt while the adjacency matrix of Gt is expanded accord-
ingly. Then multiple graph convolutional layers are employed to
learn features for all nodes. With the �rst MLPs, we obtain the prob-
abilities of selecting di�erent nodes as the starting node, and from
which we sample the node 1 as the starting node. Then based on the
features of node 1 and all node features, the second MLPs predict
the ending node. We sample from the probabilities and select the
node 7 as the ending node, which corresponds to the red node in
the candidate set. Finally, a new graph is obtained by including a
red node and connecting it with node 1.

3.4 Training the Graph Generator
The graph generator is trained to generate speci�c graphs that can
maximize the class score of class ci and be valid to graph rules. Since

such guidance is not di�erentiable, we employ policy gradient [35]
to train the generator. According to [21, 42], the loss function for
the action at at step t can be mathematically written as

L� = �Rt (LCE (pt ,star t ,at ,star t ) + LCE (pt ,end ,at ,end )), (9)

where LCE (·, ·) denotes the cross entropy loss and Rt means the
reward function for step t . Intuitively, the reward Rt indicates
whether at has a large chance to generate graph with high class
score of class ci and being valid. Hence, the reward Rt consists of
two parts. The �rst part Rt ,f is the feedback from the trained model
f (·) and the second part Rt ,r is from the graph rules. Speci�cally,
for step t , the reward Rt ,f contains both an intermediate reward
and a �nal graph reward for graph Gt+1 that

Rt ,f = Rt ,f (Gt+1) + �1
Õm
i=1 Rt ,f (Rollout(Gt+1))

m
, (10)

where �1 is a hyper-parameter, and the �rst term is the intermediate
reward which can be obtained by feedingGt+1 to the trained GNNs
f (·) and checking the predicted probability for class ci . Mathemati-
cally, it can be computed as

Rt ,f (Gt+1) = p(f (Gt+1) = ci ) � 1/`, (11)

where ` denotes the number of possible classes for f (·). In addition,
the second term in Equation (10) is the �nal graph reward forGt+1
which can be obtained by performing Rollout [42]m times on the
intermediate graph Gt+1. Each time, a �nal graph is generated
based on Gt+1 until termination and then evaluated by f (·) using
Equation (11). Then the evaluations form �nal graphs are averaged
to serve as the �nal graph reward. Overall, Rt ,f is positive when
the obtained graph tends to yield high score for class ci , and vice
versa.

In addition, the reward Rt ,r is obtained from graphs rules and
is employed to encourage the generated graphs to be valid and
human-intelligible. The �rst rule we employ is that only one edge is
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Generation of Explanation Graph

Starting with a candidate node, predict the start and end node for the edge to be 
added 

Image Source : Yuan et al., 2020 
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Figure 1: Illustrations of our proposed XGNN for graph interpretation via graph generation. The GNNs represent a trained
graph classi�cation model that we try to explain. All graph examples in the graph set are classi�ed to the third class. The
left part shows that we can manually conclude the key graph patterns for the third class but it is challenging. The right part
shows that we propose to train a graph generator to generate graphs that can maximize the class score and be valid according
to graph rules.

prediction into a combination of its inputs. In addition, both of
these studies generate input-dependent explanations for individual
examples. To verify and understand a deep model, humans need to
check explanations for all examples, which is time-consuming or
even not feasible.

While input-dependent explanations are important for under-
standing deep models, model-level interpretations should not be
ignored. However, none of the existing work investigates the model-
level interpretations of deep graph models. In this work, we argue
that model-level interpretations can provide higher-level insights
and a more general understanding in how a deep learning model
works. Therefore, we aim at providing model-level interpretations
for GNNs. We propose a novel method, known as XGNN, to explain
GNNs by graph generation such that the generated graphs can
maximize a certain behavior.

3 XGNN: EXPLAINABLE GRAPH NEURAL
NETWORKS

3.1 Model-Level GNN Interpretation
Intuitively, given a trained GNN model, the model-level interpre-
tations for it should explain what graph patterns or sub-graph
patterns lead to a certain prediction. For example, one possible
type of patterns is known as network motifs that represent simple
building blocks of complex networks (graphs), which widely exist
in graphs from biochemistry, neurobiology, ecology, and engineer-
ing [1, 2, 23, 30]. Di�erent motif sets can be found in graphs with
di�erent functions [1, 23], which means di�erent motifs may di-
rectly relate to the functions of graphs. However, it is still unknown
whether GNNs make predictions based on such motifs or other
graph information. By identifying the relationships between graph
patterns and the predictions of GNNs, we can better understand the

models and verify whether a model works as expected. Therefore,
we propose our XGNN, which explains GNNs using such graph
patterns. Speci�cally, in this work, we investigate the model-level
interpretations of GNNs for graph classi�cation tasks and the graph
patterns are obtained by graph generations.

Formally, let f (·) denote a trained GNN classi�cation model, and
� 2 {c1, · · · , c`} denote the classi�cation prediction. Given f (·) and
a chosen class ci , i 2 {1, · · · , `}, our goal is to investigate what input
graph patterns maximize the predicted probability for this class.
The obtained patterns can be treated as model-level interpretations
with respect to ci . Formally, the task can be de�ned as

G
⇤ = argmax

G
P(f (G) = ci ), (2)

where G⇤ is the optimized input graph we need. A popular way to
obtain such optimized input for interpreting image and text models
is known as input optimization [8, 24–26, 43]. However, as dis-
cussed in Section 2.2, such optimization method cannot be applied
to interpret graph models because of the special representations
of graph data. Instead, we propose to obtain the optimized graph
G
⇤ via graph generation. The general illustration of our proposed

method is shown in Figure 1. Given a pre-trained graph classi�ca-
tion model, we interpret it by providing explanations for its third
class. Wemaymanually conclude the graph patterns from the graph
dataset. By evaluating all graph examples in the dataset, we can
obtain the graphs that are predicted to be the third class. Then we
can manually check what are the common graph patterns among
these graphs. For example, the left part of Figure 1 shows that a set
of four graphs are classi�ed into the third class. Based on human
observations, we know that the important graph pattern leading
to the prediction is the triangle pattern consisting of a red node,
a yellow node, and a blue node. However, such manual analysis
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▪ Training by Policy Gradient 


▪ Reward computed using 

prediction probability and graph 

rules

▪ Considering the Reinforcement Learning setting each intermediate generated graph 

corresponds to a state. 


▪ Action corresponds to selection of start and end node of the edge to added
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Evaluation of Post-hoc Explanations

What is a good explanation?

How to measure the goodness of an explanation?
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Evaluating Post-Hoc Explanations

Functionally-grounded 
evaluation

Human-grounded 
evaluation

Faithfullness

Sparsity

https://github.com/Mandeep-Rathee/Bagel-benchmark

[BAGEL Benchmark, Rathee et al. 2022]



47

Evaluating Post-Hoc Explanations

Functionally-grounded 
evaluation

Human-grounded 
evaluation

Faithfullness

Sparsity

Correctness

(Right for right 

reasons)


https://github.com/Mandeep-Rathee/Bagel-benchmark

[BAGEL Benchmark, Rathee et al. 2022]
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Evaluating Post-Hoc Explanations

Functionally-grounded 
evaluation

Human-grounded 
evaluation

Faithfullness

Sparsity

Correctness

(Right for right 

reasons)

Plausibility

https://github.com/Mandeep-Rathee/Bagel-benchmark

[BAGEL Benchmark, Rathee et al. 2022]
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Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation
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Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation

Keep the most important features/nodes/edges and check if they 
alone can predict the original decision.

Sufficiency
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Faithfullness

Take 1: Check sufficiency and comprehensiveness of the explanation

Keep the most important features/nodes/edges and check if they 
alone can predict the original decision.

Sufficiency

Remove the features/nodes/edges not in the explanation and check if 
the original prediction changes.

Comprehensiveness
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Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?
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Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

What happens when you cannot remove features?
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Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

What happens when you cannot remove features?

Y𝒮 = X ⊙ M(𝒮) + Z ⊙ (1 − M(𝒮)), Z ∼ 𝒩
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Faithfullness

How to compute sufficiency and comprehensiveness for soft masks?

Take 2: Use RDT-Fidelity to check if the explanation is predictive and stable 

• Low fidelity • High fidelity

What happens when you cannot remove features?

Y𝒮 = X ⊙ M(𝒮) + Z ⊙ (1 − M(𝒮)), Z ∼ 𝒩
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Sparsity
But the full input is also a faithful explanation

Are the explanations non-trivial?
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Sparsity
But the full input is also a faithful explanation

Are the explanations non-trivial?

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same
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Sparsity
But the full input is also a faithful explanation

Are the explanations non-trivial?

Sparsity for hard masks = Selection size / total Take 1: 

Zorro: Hard feature and node masks

What are the essential properties of an explanation?
Let’s say we have some trained GNN providing us predictions on a
given input
A valid explanation can then be a subset of input such that the
prediction stays the same

2ULJLQDO��2XWSXW 9DOLGLW\ 6SDUVLW\
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6WDELOLW\
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�

�

RU

�

*11
�

Dr. Megha Khosla, Dr. Thorben Funke ML4G 08.12.2021 20 / 28
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What about soft masks ?

A uniform distribution of normalised mask distribution implies complete input

Sparsity 

Take 2: Check Entropy of normalised distribution of masks
Lower the entropy sparser the explanation
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Correctness

Introduce correlations in the training data which can change the decision 
on a node/graph. Then check if explanation discovers the added 

correlations.

Can the explanation model detect any injected correlations responsible for altering 
model's behavior ?

*11

*11

([SODLQHU�
([SODQDWLRQ

*URXQG�7UXWK

9V

5H�WUDLQLQJ

Target Node Incorrect prediction

Correct prediction

Check the explanation 

On retrained model
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Correctness

(i) Choosing correlations is tricky in the first place

(ii) Requires model retraining Drawbacks : 

*11

*11

([SODLQHU�
([SODQDWLRQ

*URXQG�7UXWK
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5H�WUDLQLQJ

Target Node Incorrect prediction

Correct prediction

Check the explanation 

On retrained model
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Plausibility

How close are the explanations to human rationales ?

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

+XPDQ��
5DWLRQDOHV

*11([S

*UDG

&$0

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH���

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

Metrics : F1 score for hard masks, AUPRC score for soft masks

Compute agreement of explanation with human rationales
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Plausibility

Should be used in conjunction with a suitable faithfulness metric

First ensure that the explanation is in fact approximating model’s decision

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����*&1

$3313
7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH����

*$7

7KH�ILUVW�SUREOHP�WKDW�IDLU�JDPH�KDV�LV�WKH�FDVWLQJ�RI�VXSHUPRGHO�FLQG\�FUDZIRUG�LQ�WKH�OHDG�UROH��QRW
WKDW�FLQG\�GRHV�WKDW�EDG����VXUH�ZLOOLDP�LV�Q
W�D�EDG�DFWRU��XQIRUWXQDWHO\�KH�MXVW�GRHV�Q
W�GHPRQVWUDWH�LW
DOO�LQ�WKLV�PRYLH���

Given the explainer is faithful to the model one can use plausibility to compare GNN 
models for the agreement of their decision making process with human rationales.
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Other Evaluation schemes

Measuring agreement (explanation accuracy) with planted subgraph in a synthetic 
graph

Table 1: Illustration of synthetic datasets (refer to “Synthetic datasets” for details) together with performance
evaluation of GNNEXPLAINER and alternative baseline explainability approaches.
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Figure 3: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for node
classification task on four synthetic datasets. Each method provides explanation for the red node’s prediction.

importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM ,KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
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Figure 4: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for graph
classification task on two datasets, MUTAG and REDDIT-BINARY.
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Image Source : GNNExplainer 

Drawback : How to be sure if the model picked the planted subgraph?
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Other Evaluation schemes

Measuring attribution (explanation) consistency across high performing models 

[Sanchez-Lengeling et al. 2020]

practitioner’s common sense, we may use attributions as a debugging tool — we can highlight, and
then subsequently correct, spurious correlations in a dataset [29], or apply regularization to encourage
desired behavior in the model [33, 38].

Attribution methods have been most studied in the domains of image modeling [16] and text [6],
areas where humans have strong intuition. A “ground truth” credit assignment in these domains
ultimately rests with subjective human judgment. Unfortunately, obtaining ground truth for realistic
image and text tasks is subjective, expensive, and time-consuming.

The introduction and refinement of graph-based neural network models [11, 39] has opened up
new and powerful capabilities for modeling structured data. For instance, social networks [52],
protein-protein interaction networks [54], and molecules [18, 20] are naturally represented as graphs.
Graph-valued data offer an opportunity to inexpensively and quantitatively benchmark attribution
methods, due to the fact that challenging synthetic graph problems have computable ground-truth
attributions. This allows us to quantitatively measure the performance of popular attribution methods
on several GNN model types, built for a variety of tasks.

Figure 1: Schematic of attribution task setup and attribution metrics. A. We create classification and regression tasks for which we have
a computable ground-truth. We train GNN models on these labels, and calculate attributions using the graph inputs and attribution methods we
adapt to graphs. B. We quantify attribution performance with four metrics. Accuracy measures how well an attribution matches ground-truth.
Consistency measures how accuracy varies across different hyperparameters of a model. Faithfulness measures how well the performance of
an attribution method matches model performance. Stability measures how attributions change when the input is perturbed.

Measuring Performance of Attribution Methods We use tasks with graph-valued data and com-
putable ground truths (Figure 1, left) to examine qualities of an attribution method that are necessary
for credibility: accuracy, faithfulness, consistency and stability [37] (Figure 1, right). We consider
an attribution method to have high attribution performance if it scores well on all four properties.
We focus on these qualities from [37] because they are quantitative, do not require soliciting human
judgment, and are specific to attribution, as opposed to interpretability more broadly.

Accuracy. We assess attribution accuracy by quantifying how well attributions match ground-truth
credit assignments. If the model is “right for the right reasons” [17], we expect the attribution method
to highlight the correct, ground truth nodes in the input graph (Figure 1B, upper left).

Consistency. The accuracy of an attribution technique should be consistent across high-performing
model architectures. To test attribution consistency, we quantify the variability in attribution accuracy
using the top 10% of models through a hyperparameter scan over model architectures (Figure 1B,
lower left).

Faithfulness. The performance of a faithful attribution method should reflect the performance of the
model. To quantify faithfulness, we run two experiments where we intentionally damage the training
dataset to degrade a model’s predictive performance, and systematically measure how each attribution

2

Quantifies the variability in explanation 
accuracy using the top 10% of models 
through a hyperparameter scan over model 
architectures 

Drawback : How to be sure if the model used the intended explanation?
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A few parting words

Explaining GraphML models is inherently tricky because of the complex interplay of

structure and features in the decision making process

Several graph specific approaches are proposed with no clear winner

Evaluation of is inherently tricky in general but trickier for graphs because of additional

structural explanations

A possible direction to investigate is the threat of explainability to data privacy
https://arxiv.org/abs/2207.10896, https://arxiv.org/abs/2206.14724
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